Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi					
	CRM08	Rev 1.10	BS	31-07-2021	

CONTINUOUS INTERNAL EVALUATION- 3

Dept: BS(MAT)	Sem / Div: IV/ A & B	Sub: Engineering Statistics	S Code: 18EC44		
		& Linear Algebra			
Date: 5/08/2021	Time: 3.00-4:30PM	Max Marks: 50	Elective: N		
Note: Answer any 2 full questions, choosing one full question from each part.					

Q N	Questions	Marks	RBT	COs
	PART A			
	Define Central Limit Theorem and show that the sum of the two independent Gaussian random variables is also Gaussian. What is averaging or law of large numbers.	8	L2	CO2
b	X is a random variable uniformly distributed between 0 and 3. Y is a random variable, independent of X, uniformly distributed between +2 and -2 . W = X + Y. What is the PDF for W?	8	L2	CO2
	A random process is defined by $X(t) = A\cos(w_c t + \phi + \theta)$ where A, w, ϕ are constants and θ is a random variable uniformly distributed between $\pm \pi$. Is X(t) wide sense stationary? If not why not? If so then what are the mean and autocorrelation function for the random process.		L2	CO3
	OR			
	The random variable Z is uniformly distributed between 0 and 1. The random variable Y is obtained from Z as follows: $Y = 3.5Z + 5.25$ One hundred independent realizations of Y are averaged: $V = \frac{1}{100} \sum_{i=1}^{100} Y_i$ (i) Estimate the probability $P(V \le 7.1)$ (ii) If 1000 independent calculations of V are performed, approximately how many of these calculated values for V would be less than 7.1?	8	L2	CO2
	Briefly explain the following random variables (RV). (i) Chi-Square RV (ii) Student's t RV (iii) Cauchy RV (iv) Rayleigh RV	8	L3	CO2
	A random process is described by $X(t)=A\sin(w_c t+\theta)$ where A, w_c are constants and θ is a random variable uniformly distributed between $\pm \pi$. Is X(t) wide sense stationary? If not why not? If so then what are the mean and autocorrelation function for the random process.	9	L2	CO3
	PART B	0	T 0	004
	Find the range space, Kernel and nullity of the following linear transformation. Also verify the rank nullity theorem $T:V_2(R) \rightarrow V_2(R)$ defined by $T(x_1, x_2) = (x_1 + x_2, x_1)$.	8	L3	CO4
	Apply Gram- Schmidt process to $a = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}; b = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}; c = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$ and find Orthonoraml basis also write the result in the form A=QR.	8	L3	CO4
	Factor the matrix A into $A = S \wedge S^{-1}$ using Diagonalization	9	L3	CO4

Alternally.

-

	Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]						
A1	Affiliated to VTU, Belagavi & Approved by AICTE New Delhi						
CRM08	Rev 1.10	BS	31-07-2021				
CONTINUOUS INTERNAL EVALUATION- 3							

and hence find A^{3} . where $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$			
OR			
4 a Define Orthonormal set of vectors.	8	L3	CO4
Solve Ax=b by least squares and find $p=A\hat{x}$ if $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}; b = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$.			
b Derive cosine of the angle between any two non zero vectors also the projection on a line. Project $b=(1,-1,2)$ on the line through $a=(1,3,2)$.	8	L3	CO4
c Factor the matrix A using singular value decomposition $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$	9	L3	CO4

Patamals.

MRRie

Prepared by: Madhavi R Pai